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Abstract

This paper extends Farrenkopf s analysis of a single-axis spacecraft attitude estimator using gyro and angle sensor
data to include the angle output white noise of a rate-integrating gyro. Analytic expressions are derived for the steady-

state pre-update and post-update angle and drift bias variances and for the state update equations. It is shown that only

part of the state update resulting from the angle sensor measurement is propagated to future times

Introduction

• to optimally combine star tracker and gyro data for spacecraft
There has long been an interest in Kalman filtering 1"2
attitude estimation .3'4Farrenkopf found an analytic solution for the steady-state accuracy of a single-axis Kalman

filter combining data from a gyro and an angle sensor, whicl_ has proven very useful for preliminary analysis of

spacecraft attitude determination systems? Farrenkopf implicitly assumed a rate gyro model, however, and many
missions employ highly accurate rate-integrating gyros (RIGs). The aim of this paper is to modify Farrenkopfs

result to be applicable to rate-integrating gyros. Although the intermediate results are significantly more complex

than Farrenkopf's, the final expressions for the steady-state covariance are a simple modification to his.

We begin by discussing the dynamic models for the spacecraft attitude and the gyro and the models for the gyro and
star tracker measurements. Then we derive the equations for gyro and star tracker covariance updates and obtain the

steady-state covariance, including a numerical example. The explicit state update equations are derived next; and it is
shown that the angle update due to a star tracker measurement can be divided into two parts, only one of which is

propagated to future times. The conclusions are stated at the end of the paper.

Dynamics

The single-axis spacecraft dynamics are given by
(I)

0=0),

where 0 is the rotation angle and o_ is the true angular velocity. Because of its own internal dynamics, the RIG does

not measure 0 exactly, but instead accumulates its own angle 0. The RIG dynamic equation for this angle is

_=_o+b+n,, (2)

where b is the gyro drift rate and n_ is a zero mean Gaussian white noise process. The drift rate is assumed to satisfy

(3)

where n, is also a zero mean Gaussian white noise process. These processes are assumed to obey

E{n,(t)n_(t')} = er_fi(t - t'),

t" a_6Ct - t'),E{n_(t)n,( )}=

(4a)

(4b)

and

t'E{n.(t)n_( )} =0,

where E{. } denotes the expectation value and fi(.) is the Dirac delta function.

(4c)



Farrenkopf took 0 to be the measured gyro rate and eliminated w between Eqs. (1) and (2). We will not make this

assumption, since it does not provide a convenient procedure for including angle output white noise (also known as
readout noise or electronic noise) on the RIG output. 6The procedure we adopt requires a dynamic model for the

angular rate. Since we are interested in applications that use the gyros for rate measurements rather than Eulerian

dynamic models, we approximate the rate as a pure random walk,

where nw is a third zero mean Gaussian white noise process, uncorrelated with n_ and n_, and obeying

E{n w(t)n w(t') } = a2w_(t - t').

We will eventually consider the limit of very large 0",_.

The dynamic variables are the four components of the state vector

x = [0,b,_,09] r ,

which obeys the dynamic equation

k = Ax+[O,n_,n_,n.] r,

with

000 0
A =

1 0

0 0

This state vector contains two more components than Farrenkopf's, which only contains 0 and b. With a caret

denoting expectation values, Eq. (8) gives the state propagation equation

,_(t) = _(t - t0) .r(t 0 ),

where _(t- t0) is the state transition matrix

[1 0 0 / t0 1

0 1 0 0

_(t-t°)= t-t o 1 t ltoJ"0 0

The state covariance matrix

p -- E{(x - ._)(x - j)r}

obeys

P(t) = O(t - to ) P(t o )o'r (t - to ) + J'_ o(t - t') Q o-r (t - t') dt',

where

• 2 2 0.2Q- dlag([O,o" u,O',, _])

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

is the process noise spectral density matrix.



Measurement Models

Our estimator processes gyro measurements at a time interval r, and star sensor measurements at a multiple of this,

T = hr. (15)

Since we are looking for a steady-state solution, we will only consider a single star tracker measurement followed by

n gyro measurements. We will require the covariance after processing all these measurements to be identical to the

covariance at the beginning of the time interval of length T, which is assumed to be immediately before the star
tracker measurement at time zero.

The star tracker measurement at time zero is modeled as the spacecraft rotation angle plus a white noise term:

0o = 0(0) + n., (16)

where n. is the star tracker measurement noise, which is assumed to obey

E{n.n.} = 0".260. (17)

The sensitivity matrix for the star tracker measurement is the row vector

H_, = [1,0,0,0]. (18)

At time iv, the gyro provides a measurement which is its integrated angle plus a white noise term:

_p_=O(iz)+n 7, for i= 1,2 ..... n, (19)

where ¢, is the measured value and n7 is the gyro measurement noise, which is assumed to obey

• , 2 (20)E{n_ nj } = a•_ 0 ,

with _50denoting the Kronecker delta. The gyro noise and the star tracker noise are assumed to be uncorrelated with

each other and with the process noise. The sensitivity matrix for the gyro measurement is the row vector

H, = [0,0,I,01. (21)

These are the models we need to derive our results.

Gyro Measurement Processing

Assume that we have performed a star tracker update at time zero, so that _(0+) and P(0+) denote the state

expectation and covariance immediately after a star tracker update. Then _(iz-) and P(iz-) for i = 1, 2 ..... n will

denote the state expectation and covariance immediately before the gyro update at time iz, and _:(iz+) and P(iz+)

will denote these quantities immediately after the gyro update. The steady-state condition is that P(nz+), the

covariance immediately before the star tracker update at time T, is equal to P(0-), the covariance immediately before

the star tracker update at time zero but after the gyro update immediately preceding it.

Denoting the components of the post-gyro-update covariance by lower case p,

-p_(i) pab(i) po_(i) p_(i)]
p_(i)

P(iz+)--] p_,(i) Pbb(i) Pb*(i) P (i)l
p_(i) p_(i) p_(i)/'I

Lp_(i ) pb_,(i) po,,,(i) p,,,_(i)J

(22)



Eqs.(11)-(14)give

Oli,,.<,-,>,,,,,,<;-,> ,,,,°<,-,>II°
P(ir-)= _ t rIIP_,(_-i) p_(i-i) p,(i-i) p-(_- 1).JL°

0 0 limp.(i-I) p.(i-l) p_(i-l)

Toru + 2 22 "g Oru

+] 3 2 2 " 2 2 "
. +_ (or, + Or?,,)_.rOr-I

T O r.L÷,"o',., o ÷ ' ' ,-Or'.J

The standard Kalman filter equations for the gyro measurement update give _a

P(ir+) = P(ir-) - P(i'c-)H_A-_HtP(ir-),

oo ],1 0

r 1

0 0
(23)

(24)

where A, is the scalar

• T 2

A, - HaPO_-)H t + Or, (25)
+ Or,,,) Ore,

=p_(i_l)+2Z[p_(i_l)+p_o(i_l)]+ZZ[pbb(i_l)+2pbo,(i_l)+p_(i_l)]+ZOr2 +_Z3(or 2 2 + 2.

Combining Eqs. (22)-(25) gives the ten scalar equations

3 2

poo(i) = pao(i - 1) + 2Vpa_(i - 1) + _:Sp_(i - 1) + _'t" Or, (26a)
3 2 2

_ A-_{po_(i-1) + z[p_(i - l) + pob(i-1) + pc_(i-1)] + rS[P_(i-1) + P,o_,(i-1)] + k _ Or,} ,

pob(i) = pob(i - 1) + z pb,,,(i - 1) - A__{po,(i - 1) + _:[p_(i - 1) + p_,(i - 1) + p_,(i - 1)] (26b)

÷_ or,},+rZ[p_(i_l)+po_(i_l)]+4_r3orS}{p_(i_l)+r[p_(i_l)+p_(i_l)] + 2 2

2 2 2 (26c)
p_(i) = p_(i - 1) + "rOr_- A_' {pt,_(i - 1) + _:[p_(i - 1) + p_(i - 1)] + _-'t" Or, } ,

3 2
2

Po*(i)=Or, A_t{pa_(i_l)+z[pa_(i_l)+pa_(i_l)+p_(i_l)]+zS[p_(i_l)+p_(i-1)]+,_z Or,,}, (26d)

2
p_(i) = Or, A__{p_(i - 1) + z[p_(i - 1) + p_(i - 1)] + _'t'2Or_ }, (26e)

2 2 (26t)
p_(i) = Or, A__(Ai - Or, ),

2 2

p_ (i) = p_,,, (i - 1) + "t"p_ (i- 1) + _-r2Or_ - A_t {P_,, (i - 1) + _'[p_ (i - l) + P,.,a,(i - 1)] + _r_" Or,,,} x (27a)

{Pa_(i - 1) + _"[p_ (i - l) + p_ (i - 1) + p_ (i - 1)] + l"2[p_ (i - 1) + P_,o.,(i - l)] + _ _3or2,,},

pt_(i) = p_(i - l) - A__{p_(i - 1) + v[p_(i - l) + p_(i - 1)] + _rl:2or2_} x (27b)

{p_ (i - 1) + "t"[p_ (i - 1) + Pt,,o(i - 1)] + _ "t'2Or2},

2 -1
p_ (i) = Or,A, {p,,, (i - 1) + z [Pt,,o(i - 1) + p,_ (i - 1)] + + z 2Or2}, (27c)

and

z 2 _ (27d)
P,o,o(i) = P,,,,o(i - 1) + z Or:,_- A_t{p¢,o(i - 1) + 't"[p_ (i - 1) + p,_ (i - 1)] + _"'r Or,.} .

It is clear that significant simplifications are required in order to find a steady-state solution. We will consider the

limit that crwbecomes much larger than all the other measurement and process noise variances. This means that the



filteris ignorantofthespacecraftdynamics,in thesenseof modelingthetorquesonthespacecraftanditsresponseto
thesetorques.Infact,wemayhavesomeknowledgeofthesequantities,butthefilterdoesnotmakeuseof this
knowledge,insteadrelyingentirelyontheRIGforinformationontheangularmotion.Thisis themostcommon
caseinpractice.Equation(27d)showsthatp,,,,(i) becomes large along with o"w, so we will take

p,,,,o(i) = a,r o:,. + ,b,,,,(i) (28)

where the tilde denotes the part that remains finite as cr becomes large. None of the other components of P(ir+)

contain terms that become large in proportion to or. Now Eq. (25) gives

a, = r3(a,_, + _.)a".+ _, ,

where A, is the finite part

2

A_ - p_ (i - 1) + 2z" [p_ (i - 1) + P_o (i - 1)] + z"2[p_ (i - I) + 2p_ (i - I) + ,boxo(i - 1)] + ra_ + _ r3a, _ + a,.

Substituting Eq. (28) and

_,,i = r-3(a,__+ _)-1a;2[1 _ r-3(a___+ _)-_a;2h, + ... ] ,

into Eqs. (26) and (27) and equating terms of first order in o'_ gives

a i = (¼ + c_i_1)/(1 + 3ai_ l).

Equating terms that are independent of o'2 gives the ten equations

+_zcr +cry,
Poo(i) = Poo(i_l)+p_(i_l)_2poc(i_l)+2T[p_(i_l)_Pob(i_l)]+_2p_(i_l)+_Cy _ 3 2

-- - -_T (7 u ,puo(i)=pob(i-l) p_(i 1)-zpu,(i-1) 2 2

pbb(i) = p_(i -- 1)+ ra_,

2
po_(i) = _, ,

(29)

and

(30)

where

(31)

(32)

(33a)

(33b)

(33c)

(33¢

(33e)

(33f)

p_(i) = 0,

2

p_ (i) = or,,

p_ (i) = p_ (i - 1) - p_ (i - 1) - _"p_ (i - 1) + k____-_ {p_ (i - 1) - p_ (i - 1) (34a)

+z[p_(i_l)+2p_(i_l)_p_(i_l)_p_(i_l)]+z2[p_(i_l)+p_(i_l)]+ra_ 3 2

pb,o(i) = p_(i -- 1) -- kj_l[p_(i - 1) + pb_o(i - 1) + z-lp_(i - 1) + _ _'O'_ ], (34b)

-i 2 (34c)
p_(i) = ki_lz _r_,

_,,_ (i) = (k,__ - 1): .b,_ (i - 1) + 2k,__(k,_ t - l)[z -_ p_(i - 1) + p_(i - 1)]

+ k,:_tz-2[p_(i - 1) + 2rp_,(i - 1) + r2p_(i - 1) + "ro'_ + _t't'_a. _ + o'_].

_, _--(_ + c_,)/(_-+ a,).

Terms that go to zero as o',. becomes infinitely large are ignored.

(34¢

(35)



Wewillseebelowthatthestartrackerupdatedoesn'taffectc_,.Thuswecanassumethat the coefficient a has

attained a steady-state value resulting from repeated iterations of Eq. (32). This is the positive root of

a = (¼ + ct)/(l + 3a), (36)

or

Cx= 1/-_/_. (37)

The corresponding steady-state value of k is, from Eq. (35),

k = 3- .,J'3. (38)

We now want to consider the overall effect on the covariance of the n gyro updates. Since p_, Puo, P_.,,, and P,,,,o

do not appear on the right side of Eqs. (33), these equations can be combined in the 3x3 matrix form

p®(i) P"(i)/-- 1 o//p®</ 1) p_,(i-1) 1

p_(i) p_(i) p_(i)J 0 OjLp_(i 1) p_(i-1) p,_(i-1)j[_o o (39)

+ _+ 2 2 ra_ 0T Oru

2 0 2
O"e O"e

This equation represents the combined effect of propagation over a time step and a gyro update. It is easy to show by

induction that for i > 0

p_o(i) p.(i)p_,(i)/= 1 o//,,.(o)
p_,(i) p_(i) p¢_(i)j O_lLp_,(o) p,,,,(o) p,,(o)_lLO (40)

1

0 0

i'ro_ +_-(iz)3cr_ +0%2 -_(i'r)2o'_ Or

+ - -t-(ir)_or,= - _VrO'. 0 •
2

2 0 0%0",

Star Tracker Measurement Processing

Using the notation and steady-state relation introduced at the beginning of the previous section, Eq. (40) gives

%_(0-) = P_(m:+)

= e,_ (0+) + t,,,,,(0+) - 2P,, (0+) + 2r [P,,,(0+) - P_(0+)1+ r=e_,(o+) + 7-a_ + _ r_a _,+ ,:r_,,

= - TP_,(O+)-_T a_,p0b(0-) = P_(nr+) P_(0+) P_(0+)- 2 ,

P_(0-) = Poe(nv+) = Pta,(0+) + Tcr_,

2
P_(O-) = Pa,(nz+) = or,,

%,(0-) = %,,(nr+) = 0.

(41a)

(41b)

(41c)

(41d)

(41e)

and

2
V_(O-) = P**(nr+) = or.

(4If)



Thestartrackermeasurementupdateattime zero gives

P(O+ ) = P(O-)- p(O-)H_[ H_,P(O-)H_ + o'_ ]-' H,, P(O-).

Inserting this into Eqs. (41a-c) gives the steady-state conditions

[o'_ + a,_ + TP_,(0-)]: = [P_(0-) + o',] ][T2P_(0 -) - Pee(0-) + TO'_ + _ T'o'_ + 2o'_ + a_ ],

[a,_ - Poe(0-) + T P_,(0-)]P_ (0-) = [P_ (0-) + a_. ][TPbL,(0-) + { T2a_],

(42)

(43a)

(43b)

and

2] To'_. (43c)e_:(0-) = [P_(0-) + a.

The steady-state values of P_, P_, and P,_ are not of interest. We note, however, that Eq. (42) does not change

the component of P,,_ proportional to a2w, so a is left unaltered by the star tracker measurement, as promised.

Defining a dimensionless variable _'by the relation

P®(o-) = - T'a a, a. _, (44)

Eq. (43c) gives

Poo(o-) = (¢2 _ 1)o.._, (45a)

and it follows from Eq. (42) that

Poo(O+) = (1 - _'-Z)o'.2 • (45b)

Equations (43b) and (42) give

pb_(0-T-) = [_'- (1 + S_)_-t]r-VZa,a, + {ra_ ,
(46)

where

We similarly define, following Farrenkopf,

St. _ (:re/_n "
(47a)

Sv =.Tl_e,/a, (47b)

S, - T 3t2cr,/a, .

The remaining task is to find _by solving Eq. (43a). which can be written

[_.z - 2(¼S, + y)_'+ 1+ S,2][_"2 - 2(¼S, - y)_'+ 1 + S,2] = O.

with

r - (l+s; +÷s3 +hs_,) '_.

The physically significant root of Eq. (48) is the largest root,

(=r+_s. + _(2r s. +s_ +_s_) '/: ,

v, here y is assumed to be positive. Equation (50) gives

(l + s_)_'-' =r +_s, -_r(2rs. +s _,+_s_,) '/_

(47c)

(48)

(49)

(50)

(51)



whichcanbeusedtorewriteEq.(49)inthemoreconvenientform

P_ (0-T-) = (2 y T t/"cr.cr, + cr_ + 4;T"o_ )_/"0, +__.4-To'_ . (52)

The principal results of this paper are given by Eqs. (45), (49), (50) and (52). Although the derivation is much more
involved than Farrenkopf's and the notation is somewhat different, the final results only differ by the S,: term in Eq.

(49). For a, = 0, these equations are completely equivalent to Farrenkopf's. It is remarkable that these results do not

depend in any way on the gyro update interval r.

Approximate Forms

Approximate expressions valid for rapid updates are obtained by retaining only the lowest order terms in S_ and S,.

Equations (49) and (50) give

;'=0+ ":+ + +s?]''= (53)

which gives the approximate forms for the angle and drift bias variances

2 tn 3,,2 2 o.2),n +To_]tn+o 2,P_(0-) = (0. 2 + o, ) [2T o.(o. +

2 2
4 O"n O t

o. ,+o.e.,(0+) = (o'_+ o'_)_/_ 0.

(54a)

(54b)

and

g,,(0;) = [2 T '/_o_(o'.=+ o'._) ,n + o'_] ,no.. (55)

2 which is negligible in this
The difference between the pre-update and post-update drift bias variance is of order or,,

approximation. When 0, is negligible, the post-update and pre-update angle variances are equal in the approximation

of rapid updates, also.

Numerical Example

Consider a rate-integrating gyro with

o_ = 0.025 deg/ha/-_--_ = 7.27 #rad/s-4s-4_7,

o'_ = 3.7 x 10 -5 deg/hour 3n = 3 x 10 -4 Nrad/sec 3n,

(56a)

(56b)

and

o, = 15 prad. (56c)

These numbers are characteristic of a ring-laser gyro with very low drift but with significant angle white noise.

Assume that the star tracker measurement noise is

cr, = 15 btrad. (56d)

Figure 1 shows the steady-state pre-update and post-update angle standard deviations, which are the square roots of

P_(0q:), for star tracker update times between 0.01 sec and 100 sec. The solid curves are the exact values given by

Eqs. (45), the dashed curves are the result of ignoring o, in these exact equations, and the dot-dash curves are rapid-

update approximations of Eq. (54). For each pair of curves, the upper curve is the pre-update value, and the lower

curve is the post-update value. The figure shows that the rapid-update approximations always lie between the pre-

update and post-update exact values, and that these approximations are reasonably accurate for update times of less

than one second with this set of gyro parameters.



Thesteady-statedriftbiasstandarddeviationsarenotplotted,sincetheyalwaysliebetween0.0467pradians/sec and

0.0468/.tradians/sec for these gyro parameters, whether or not the o', terms are included. The lower value is just

equal to _, the common limit of Eqs. (52) and (55) for small or.

State Update Equations

The steady-state Kalman gains and state update equations are also of interest. The steady-state gains for the gyro

update are given by

K, = P(ir+)H_cr_ 2 = [1, 0, 1, k/z] r. (57)

It is remarkable that these gains are constant, independent of the number of gyro updates since the previous star

tracker update. The state update equation is

J(iz+) = £(iz-) + Ka[¢_i - ¢(iz-)]. (58)

5o !i //
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Figure 1. Steady-state pre-update and post-update angle standard deviations

Solid curves from Eqs. (45), dashed curves from Eqs. (45) with tr, = 0, dot-dash curves from Eq. (54)



Thisgives,fortheindividualcomponents:

O_ir.)= OCir-)+ ¢,- _ (it-)= O((i- 1)r+)+ ¢,- O((i- l)r*)- r/_((i- l)r+),

/_(ir.)=/_(ir-)=/_((i-i)_+).

_(iv÷)= O(ir-)+ ¢,- ¢_(i't'-)= 0,,

(59a)

(59b)

(59c)

and

03(ir+) = 03(iz-) + kz-' [¢, - t_(i'c-)] = (1 - k) 03((i - l)z+) + kz -t[_, - _((i - 1)z+) - _"/_((i - 1)'r+)], (59d)

where we have used Eqs. (10) and (11) to include the state propagation from the previous gyro update.

The first three of Eqs. (59) have a straightforward interpretation for i _>2. In this case _((i - 1)z+) = _,__ and the

estimate of the spacecraft rotation angle is the previous estimate plus the rotation sensed by the gyro, corrected for

the estimated drift bias. The estimate of the bias is not refined by the gyro measurement, as expected; and the

estimate of the gyro-sensed angle is equal to the gyro measurement itself. We will return to the i = 1 case after

considering the star tracker update.

Equation (59d) is more difficult to understand. For k equal to unity, it would just say that the best estimate for the

angular velocity is the gyro-sensed rate over the last measurement interval, corrected for drift. For k less than one,

the updated angular velocity estimate would be some average of the previous estimate and the gyro-sensed rate over
the last measurement interval. The steady-state k is greater than one, however, which means that the previous

estimate of the angular velocity is given a negative weight in this average. It is worth noting that the variance of the

angular velocity estimate is very large in our model, as shown by Eq. (28).

The steady-state gains for the star tracker update are given by

1-( -2 ]

/
Ku=P(O+)H_ {y;2= (S,/¢) 2 1'

,:r__P_ (O+).]

(60)

where we have used

Pab(O+)= (-2p_(o-) = -(-'T'/2crcr,.
(61a)

and

F,_(o+) = ¢'-_t',,(o-) = ¢'-_o-,_.
(61b)

The state update equation is

J(0+) = ._(0-) + K,, [0 o -/9(0-)]. (62)

Star tracker updates of 03, which depend on the steady-state value of P_ (0+), are not generally performed in

practice. The other three components of the state vector are updated by

0(0+) =/9(0-) + (1 - (-:)[00 - 0(0-)], (63a)

b(0+) =/_(0-) - ((T) -_ S,,[Oo - 0(0-)], (63b)

and

$(o+) = ,_(o-) + (s,/()'[Oo -#(o-)].
(63c)



It isconvenienttodefineamodifiedangleestimate0 by

O_ir+) =-O(ir+)
(64a)

for i = 1,2 ..... n, and

0(0+) -- _(0+) + % - _(0+), (64b)

where 0o is understood to denote the gyro measurement immediately preceding the star tracker measurement at time

zero. Thus 0 is the optimal angle estimate following a gyro update, but differs from the optimal estimate after a star

tracker update. Now Eq. (59a) can be written

0(it+) = O((i - 1)v+) +0, -¢,-, - r/_((i - 1)v+) (65)

for all gyro updates. With this restructuring of the update equations, the need to estimate _ vanishes.

Since 0(0-) is the angle estimate following the gyro update immediately preceding the star tracker measurement, it

is consistent with our labeling conventions to denote this quantity by 0(0-) on the right side of Eqs. (63). This and

Eqs. (50), (51), (63), and (64) enable us to write the star tracker update of the optimal angle estimate as a two-step

process

0(0+) = 0(0-) + _r-'(2y S_ + S_ + _ S_)trz[o0 - 0(0-)], (66a)

followed by

0(0+) = (cr_ + cr_)-'[cr_ 0(0+)+ cr_00]. (66b)

Equations (63) and (65) show that the update of Eq. (66a), which vanishes if or, = crv = 0, is propagated into future

estimates of the angle and the drift bias. In contrast to this, the update of Eq. (66b), which does not depend on o', or

cr and vanishes if or, = 0, is only effective at the time of the star tracker measurement. The appearance of Eq. (66b)

as the optimal combination of independent quantities 0(0+) and 00 with standard deviations o', and cr, is very

misleading, since these quantities are correlated by Eq. (66a).

Conclusions

Analytic expressions for the steady-state accuracy of a single-axis Kalman filter combining data from a gyro and an

angle sensor have proven very useful in tailoring attitude sensor specifications to mission requirements. This paper

provides a very simple modification to Farrenkopf's analytic expressions to include the effects of angle white noise
on the output of a rate-integrating gyro. The resulting equations depend on the star tracker update interval, but are

independent of the gyro update interval. The effect of the angle white noise is significant for a specific set of gyro

parameters analyzed. A rapid-update approximation to the steady-state accuracy is reasonably accurate for star tracker

update rates of once per second or faster for these gyro parameters.

The model developed in this paper leads to an effective two-component filter for the attitude angle and gyro drift bias,

much like Farrenkopf's. In fact, the filter is identical with Farrenkopf's if gyro angle output noise is absent. In the

presence of gyro angle output white noise, the update of the angle estimate resulting from a star tracker measurement
can be broken into two parts. The first part, which vanishes when the gyro drift parameters are zero, is propagated

forward into future angle estimates. The second part of the update, which is independent of the gyro drift parameters

and vanishes if the gyro readout white noise is zero, is only effective at the time of the star tracker measurement.
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